

# ООО «ВМК-Оптоэлектроника» Научный совет по аналитической химии РАН Институт автоматики и электрометрии СО РАН Новосибирский государственный технический университет

# Материалы XVI Международного симпозиума «Применение анализаторов МАЭС в промышленности»

Новосибирск, Академгородок, 14-16 августа 2018 г.



НОВОСИБИРСК

ИЗДАТЕЛЬСТВО СИБИРСКОГО ОТДЕЛЕНИЯ
РОССИЙСКОЙ АКАДЕМИИ НАУК

2018

УДК 543.423:543.08:543.421 ББК 24.4 М 34

Материалы XVI Международного симпозиума «Применение анализаторов МА-ЭС в промышленности», Новосибирск, Академгородок, 14-16 августа 2018 г. / ООО «ВМК-Оптоэлектроника» [и др.]. – Новосибирск: Изд-во СО РАН, 2018. – 226 с.

Материалы посвящены вопросам обеспечения качества химического анализа и его метрологическому обеспечению; разработке новых приборов и методик для атомно-эмиссионного и атомно-абсорбционного анализа веществ и материалов; созданию стандартных образцов состава; применению спектральных комплексов с анализаторами МАЭС, в том числе новых — «Гранд-ААС», «Колибри-ААС» и «Гранд-СВЧ» для одновременного многоэлементного анализа растворов; «Гранд-Глобула», «Экспресс» для прямого атомно-эмиссионного анализа твёрдых металлических и порошковых проб; «Гранд Поток» для экспресс-анализа порошков методом просыпки-вдувания; «Гранд-Эксперт» для экспресс-анализа металлов и сплавов; новым линейкам фотодетекторов и анализаторам МАЭС на их основе; новым математическим методам и программному обеспечению для обработки атомно-эмиссионных и атомно-абсорбционных спектров.

Представленные работы направлены на развитие приборного и методического обеспечения методов атомного спектрального анализа, в том числе нового способа одновременного многоэлементного атомно-абсорбционного анализа растворов, а также перспективного способа сцинтилляционного атомно-эмиссионного анализа природных порошковых проб.

Для специалистов в области аналитической химии, оптического спектрального анализа, а также аспирантов и студентов старших курсов химических и физических факультетов.

Материалы публикуются в авторской редакции.

## КОМПЛЕКС «ГРАНД-СВЧ» ДЛЯ АТОМНО-ЭМИССИОННОГО АНАЛИЗА РАСТВОРОВ

О. В. Пелипасов<sup>1,2</sup>, В. А. Лабусов<sup>1,2</sup>, А. Н. Путьмаков<sup>1,2</sup>, К. Н. Чернов<sup>3</sup>, В. М. Боровиков<sup>1,2</sup>, И. Д. Бурумов<sup>1,2</sup>, Д. О. Селюнин<sup>1,2</sup>, В. Г. Гаранин<sup>2</sup>, И. А. Зарубин<sup>1,2</sup>

1 – Институт автоматики и электрометрии СО РАН 2 – ООО «ВМК – Оптоэлектроника» 3 – Институт ядерной физики им. Г.И. Будкера СО РАН E-mail: pelipasov@gmail.com

#### Аннотация

В статье описаны аналитические возможности разработанного комплекса для АЭС анализа «Гранд-СВЧ», предназначенного для анализа опасных химических растворов с возбуждением их в микроволновой плазме. Разрабатываемый спектрометр работает на частоте 2,45 ГГц с использованием азота в качестве плазмообразующего газа.

Эмиссионная спектроскопия на основе плазменных источников возбуждения является общепринятым методом элементного анализа. Спектрометры с микроволновой плазмой на сегодняшний день уступают по своим аналитическим характеристикам источникам ICP, однако, благодаря возможности использования атмосферного азота для создания плазмы и низкой себестоимости анализа, становятся привлекательным методом для решения ряда аналитических задач.

Авторами данной статьи были обобщены принципы получения «оптимальной» микроволновой плазмы для эффективного нагрева, испарения, атомизации и ионизации жидких проб. Однако, в результате полученная плазма имела ряд недостатков и ограничений, указанных в работе [1].

Использование СВЧ резонатора с электромагнитной модой высшего порядка позволяет сформировать плазму осесимметричной формы, аналогичной ИСП факелу (рис. 1). Подробности формирования плазмы в данной статье намеренно опущены, а упор сделан на аналитические характеристики разрабатываемого комплекса, представляющие интерес химикам-аналитикам.

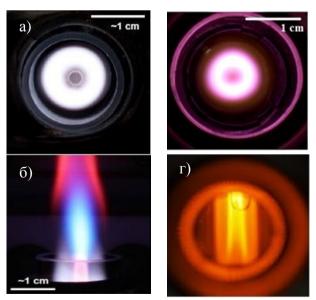



Рис. 1. Фотографии аксиального обзор ИСП плазмы — (а), радиального обзор ИСП плазмы — (б), аксиального обзора созданной микроволновой плазмы — (в) и радиального обзор микроволновой плазмы — (г).

Получаемая в разработанном и изготовленном резонаторе микроволновая плазма показана на рис. 1, где так же представлены фотографии аксиального и радиального обзора аргоновой ИСП плазмы. На фотографии видно сходство структуры ИСП и микроволновой плазмы, образованной действием переменного электромагнитного поля. Разница в толщине слоя плазмы обусловлены различием толщины скин-слоя, зависящего от частоты электромагнитного поля, возбуждающего плазму [1]. Тороидальная форма плазмы обеспечивает пространственное разделение интенсивностей аналитических линий и спектрального шума самой плазмы, обусловленного излучением плазмообразующего газа, что приводит к возможности использовать молекулярный азот в качестве плазмообразующего газов.

Для решения задачи анализа особо вредных и токсичных элементов компанией «ВМК-Оптоэлектроника» был разработан комплекс АЭС «Гранд-СВЧ», фотография которого представлена на рис. 2. Комплекс состоит из защитного химического бокса со столом и отдельно стоящего спектрометра «Гранд».



Рис. 2. Внешний вид комплекса «Гранд-СВЧ» с защитным боксом

В защитном боксе для минимизации используемого пространства и минимизации поверхностей, подвергающихся химическому заражению, размещался только резонатор и система ввода пробы, включающая держатель кварцевой горелки, горелка, распылительная камера ML180021, пневматический распылитель TR-50-A1 и 3-х канальный перистальтический насос Spetec (рис 3.).




Рис. 3. Внутреннее содержимое химического бокса, резонатор и система ввода пробы

Поджиг плазмы осуществлялся высоковольтной искрой, введённой в промежуточный поток газа горелки с впрыском порции аргона в течение 5 секунд и последующей заменой его на азот. Холодный хвост плазмы удалялся с оптического пути воздушным ножом. В измерениях использовался аксиальный обзор плазмы с горизонтально расположенной плазменной горелкой.

В качестве спектрометра использовался многоканальный спектрометр «Гранд» в модификации с двумя дифракционными решётками с 2400 шт/мм и 900 шт/мм для охватывания спектрального диапазона от 190 до 800 нм [1]. Спектр регистрируется двумя анализаторами МАЭС, состоящими из 14 кристаллов БЛПП-2000 каждый со временем интегрирования от 2 мс. Излучение в спектрометр заводилось с помощью оптоволоконного жгута-разветвителя с коэффициентом пропускания в УФ области около 0,7-0,8.

Комплекс полностью автоматизирован и позволяет пользователю управлять процессом анализа и менять настройки мощности, расходов газа с помощью компьютерной программы управления при создании метода и в процессе анализа. Основные параметры комплекса «Гранд-СВЧ» приведены в табл. 1.

Табл. 1. Параметры комплекса «Гранд-СВЧ»

| Параметр                                                      | Значение               |  |
|---------------------------------------------------------------|------------------------|--|
| Мощность СВЧ, Вт                                              | 1000                   |  |
| Поток азота                                                   |                        |  |
| – охлаждающий, л/мин                                          | 10                     |  |
| – промежуточный, л/мин                                        | 0,2                    |  |
| <ul><li>– распылителя, л/мин</li></ul>                        | 0,7                    |  |
| Обзор плазмы                                                  | Аксиальный             |  |
| Скорость перистальтического насоса в режиме измерения, об/мин | 10                     |  |
| Скорость перистальтического насоса в режиме промывки, об/мин  | 60                     |  |
| Время измерения, сек                                          | 10                     |  |
| Количество реплик                                             | 3                      |  |
| Ширина щели спектрометра, мкм                                 | 15                     |  |
| Время стабилизации плазмы до измерений, мин                   | 10                     |  |
| Освещение входной щели спектрометра                           | 1:1 ахромат f = 110 мм |  |
| Базовая экспозиция многоканального детектора, мс              | От 2                   |  |
| Спектральный диапазон, нм                                     | 190 – 800              |  |
| Спектральное разрешение, нм                                   | 0,012 (200 нм)         |  |
| Температура стабилизации детектора, °С                        | 20                     |  |

Обзорный спектр плазмы, зарегистрированный анализаторами МАЭС, представлен на рис. 4. Спектр состоит из сплошного фона, молекулярных полос OH, NO,  $N_2$ . При введении в плазму водных растворов полосы  $N_2$  значительно уменьшаются или исчезают совсем и появляется полоса NH, образованная при диссоциации  $N_2$  до  $N_2^+$  и N и  $H_2O$  до OH и H. Полоса NH имеет разряженную структуру и не мешает определению аналитических спектральных линий элементов.

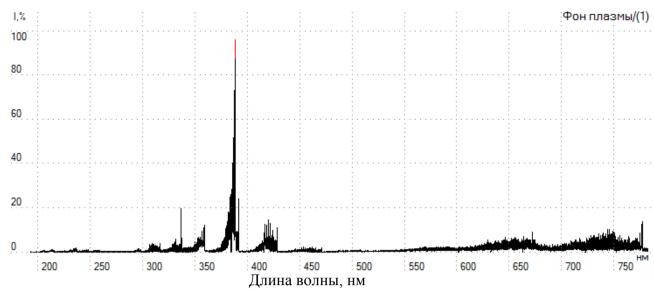



Рис. 4. Обзорный спектр азотной микроволновой плазмы, зарегистрированный анализаторами МАЭС

Обработка измеренных спектров включала операцию вычитания спектра blank из спектра пробы. В результате вычитания получается спектр элементов пробы без молекулярных полос или других составляющих фона плазмы, что значительно облегчает выбор аналитической линии при низких содержаниях аналита в пробе и построение градуировочных графиков. Кроме операции вычитания спектра, программа «Атом» позволяет проводить коррекцию межэлементных влияний, наложений и многое другое.

На рис. 5 показаны примеры градуировочных графиков металлов, входящих в комплекты СОП: МЭС-1, МЭС-2, МЭС-3, МЭС-4, и МЭС-РЗЭ, поставляемые компанией НПО «Скат» (г. Новосибирск). Растворы готовились методом разбавления деионизированной водой с удельным сопротивлением  $18~\text{MOM}\cdot\text{cm}$ . Аналитические линии выбирались, как правило, самые интенсивные, свободные от спектральных помех. Следует отметить, что минимальный объём пробы для измерения составляет не менее 0,5~m при использовании вышеуказанной системы ввода пробы. Линейный динамический диапазон определения концентрации составляет, как правило,  $10^5~\text{n}$ 0 измерению одной длины волны, что соответствует диапазону ИСП спектрометров.

Долговременная стабильность аналитического сигнала на примере линии Fe 305,90 нм с концентрацией 1 мг/л, измеряемая непрерывно в течении 6 часов без использования внутреннего стандарта составляет менее 1,5 %, что является сравнимым результатом с самыми современными ИСП спектрометрами.

Пределы обнаружения определены по критерию 3σ (табл. 2). Полученные значения пределов обнаружения не уступают единственному серийно выпускаемому спектрометру с микроволновой плазмой Agilent MP 4200, превосходят пределы обнаружения (ПО) пламенных атомно-абсорбционных спектрометров и очень близкие к современным ИСП спектрометрам. При использовании техники генерации гидридов для таких элементов как: As, Bi, Hg, Sb, Se, Te ПО снижаются на несколько порядков.

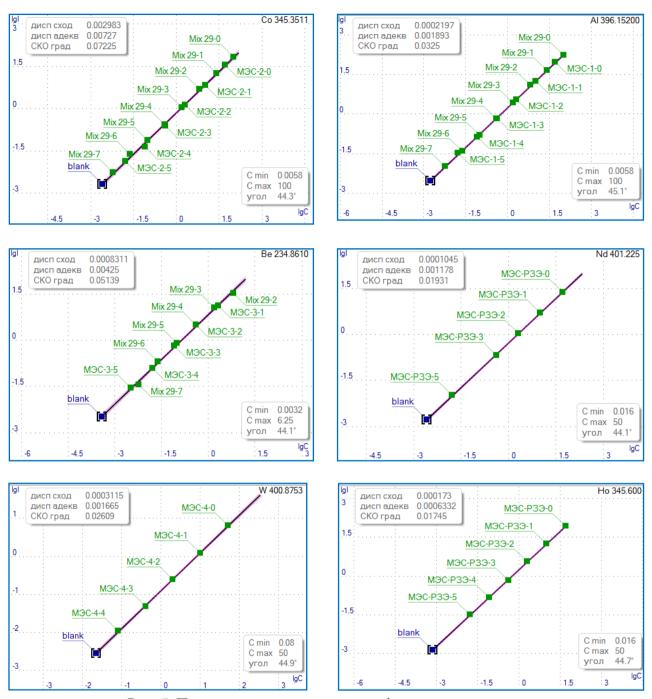



Рис. 5. Примеры градуировочных графиков различных элементов

Табл. 2. Пределы обнаружения

| Элемент | λ,нм   | «Гранд-<br>СВЧ» | Agilent<br>MP 4100<br>[2] | ICP<br>AES[3] | Flame<br>AA [3] |
|---------|--------|-----------------|---------------------------|---------------|-----------------|
| Ag (I)  | 328,07 | 0,6             | 0,5                       | 0,6           | 1,5             |
| As (I)  | 234,98 | 52,5            | 60                        | 1             | 150             |
| Al (I)  | 396,15 | 1,6             | 1,3                       | 1             | 45              |
| B (I)   | 249,77 | 0,6             | 0,6                       | 1             | 1000            |
| Ba (II) | 455,4  | 0,2             | 0,2                       | 0,03          | 15              |
| Be (I)  | 234,86 | 0,2             | 0,1                       | 0,09          | 1,5             |
| Cd (I)  | 228,80 | 1,2             | 1,4                       | 0,1           | 0,8             |
| Co (I)  | 345,35 | 4               | _                         | 0,2           | 9               |
| Cr (I)  | 428,97 | 0,3             | 0,5                       | 0,2           | 3               |
| Cu (I)  | 324,75 | 0,7             | 0,6                       | 0,4           | 1,5             |
| Fe (II) | 259,93 | 1,2             | 1,6                       | 0,1           | 5               |
| Mg (II) | 279,55 | 0,11            | 0,12                      | 0,04          | 0,15            |
| Mn (II) | 257,61 | 0,3             | 0,25                      | 0,1           | 1,5             |
| Ni (I)  | 341,47 | 1,8             | 1,3                       | 0,5           | 6               |
| Pb (I)  | 283,30 | 4,5             | 4,4                       | 1             | 15              |
| Sb (I)  | 206,83 | 9               | 12                        | 2             | 45              |
| Se (I)  | 196,02 | 6               | 7                         | 2             | 100             |
| V (II)  | 309,31 | 0,4             | 0,2                       | 0,5           | 60              |
| Zn (I)  | 213,85 | 2,8             | 3,2                       | 0,2           | 1,5             |

Изготовлен СВЧ резонатор с СВЧ модой высокого порядка, позволивший получить тороидальную форму плазмы. Резонатор был использован в комплексе «Гранд-СВЧ» в качестве источника возбуждения спектров для АЭС анализа особо опасных химических элементов. Комплекс позволяет защитить человека от опасного воздействия на него как химических веществ, так и радиоактивных. Комплекс полностью автоматизирован и оснащён всеми необходимыми для непрерывной работы системами и блокировками. Спектрометр «Гранд» позволяет регистрировать одновременно весь спектральный диапазон в области от 190 до 800 нм растворов с объемом от 0,5 мл с концентрациями от единиц мкг/л до сотен мг/л. Линейный динамический диапазон определения концентрации составляет 10<sup>5</sup> по измерению одной длины волны, что соответствует диапазону ИСП спектрометров. Долговременная стабильность аналитического сигнала измеренного в течение 6 часов без использования внутреннего стандарта составляет не более 2 % ОСКО. Полученные ПО не уступают единственному серийно выпускаемому спектрометру с микроволновой плазмой компанией Agilent и практически достигают ИСП спектрометров.

### Литература

- 1. Путьмаков А.Н., Пелипасов О.В., Максимов А.Ю., Боровиков В.М., Чернов К.Н. Разработка источника микроволновой плазмы для атомно-эмиссионного спектрального анализа растворов // Заводская лаборатория. Диагностика материалов. 2014. Т. 80, № 5. С. 23-28.
- 2. *Башилов А.В., Рогова О.Б.* Атомно-эмиссионная спектрометрия микроволновой плазмы: позиционирование, возможности, достоинства и ограничения // Заводская лаборатория. Диагностика материалов. 2016. Т. 81, № 1(II). С. 117-121.
  - 3. [Электронный ресурс]: <a href="https://www.perkinelmer.com/PDFs/Downloads/BRO\_WorldLeaderAAICPMSICPMS.pdf">https://www.perkinelmer.com/PDFs/Downloads/BRO\_WorldLeaderAAICPMSICPMS.pdf</a> (дата обращения 30.07.2018)